Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues
نویسندگان
چکیده
[1] A simulation of a diurnal cycle of atmospheric boundary layer (ABL) flow over a homogeneous terrain is performed using large-eddy simulation (LES) with the Lagrangian scale-dependent dynamic subgrid-scale model. The surface boundary condition is derived from the field observations of surface heat flux from the HATS experiment (Horst et al., 2004; Kleissl et al., 2004). The simulation results display good general agreement with previous modeling and experimental studies with regard to characteristic features such as growth of the convective boundary layer by entrainment, nocturnal jet, and multilayered flow structure of the nocturnal regime. To gain a better understanding of the physical parameters affecting the statistics of the flow, we study the dependence of a subgrid parameter (dynamic Smagorinsky coefficient), resolved turbulent kinetic energy, and resolved vertical velocity variance upon atmospheric stability. The profiles of these turbulent variables plotted as a function of Obukhov length show ‘‘hysteretic’’ behavior that implies nonunique dependence. The subsequent use of local Richardson number as the scaling parameter shows a decrease in this ‘‘hysteresis,’’ but there is an increased scatter in the profiles with increasing height. Conversely, profiles plotted as a function of local Obukhov length (based on the fluxes at the local vertical level) show almost no hysteresis, confirming the validity of Nieuwstadt’s local scaling hypothesis. Although the local scaling hypothesis was formulated for the stable boundary layer, we find that it applies to the entire stability range of the diurnal cycle.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کاملField Experimental Study of the Smagorinsky Model and Application to Large Eddy Simulation
Large-eddy simulation (LES) has become an indispensable tool for prediction of turbulent atmospheric boundary layer (ABL) flow. In LES, a subgrid-scale (SGS) model accounts for the dynamics of the unresolved scales of motion. The most widely used SGS model is an eddy-viscosity closure, the Smagorinsky model, which includes a parameter that must be prescribed in some fashion, the Smagorinsky con...
متن کاملNumerical study of dynamic Smagorinsky models in 3 large - eddy simulation of the atmospheric boundary 4 layer : Validation in stable and unstable conditions
7 [1] Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is 8 performed over a homogeneous surface with different heat flux forcings. The goal is to test 9 the performance of dynamic subgrid-scale models in a numerical framework and to 10 compare the results with those obtained in a recent field experimental study (HATS 11 (Kleissl et al., 2004)). In the dynamic model the Smag...
متن کاملOn the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer
Eddy-viscosity closures for large eddy simulations (LES) of atmospheric boundary layer dynamics include a parameter (Smagorinsky constant cs), which depends upon physical parameters, such as distance to the ground, atmospheric stability, and strain. A field study [Horizontal Arrays Turbulence Study (HATS)] specifically designed to measure turbulence quantities of interest in LES, such as the pa...
متن کامل